

"Climate Change Vulnerabilities of and Adaptation Strategies for New York's Future Electric System"

Project Overview

Delavane Diaz, PhD Senior Technical Leader Energy & Environmental Analysis Group

> SUNY Global Center, New York, NY May 16, 2017

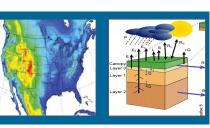
Extreme weather and climate resiliency affect the electric system via multiple pathways and at various scales

	Vulnerability	Driver	Risk
Supply and Distribution	Hydropower	precipitation, snowmelt, runoff	Reduced hydropower resource availability
	Thermoelectric units	air temp	Reduced thermal efficiency of power generation
	Power plants near water	sea level rise, precipitation	Flood risk in low-lying coastal and riverine areas
	Water-cooled units	water temp	Temp of intake and discharge water, cooling efficiency
	Wind and solar	wind speed & direction, clouds	Availability / predictability of renewable power
	T&D lines	air temp	Line efficiency, sagging lines
	Utility assets	extreme weather, storms	Power outages, infrastructure damage
Demand	Total consumption	air temp, extreme weather	Changes in HDDs / CDDs Changes in demand shapes and regional patterns
De	Peak demand	air temp, humidity, extreme weather	Increase in summer peak load, power outages

from NYSERDA (2011)

What is the potential cost of these impacts?

What is the benefit of proactive adaptation planning?

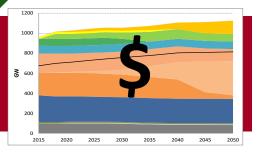

"Informing the resiliency of NY's *electric system of the future* for operations in the *climate of the future*"

- Objective: Assess NYS electricity system performance, vulnerabilities, and adaptation strategies under a future climate, including costs and benefits at the system-level
- New 2-year EPRI-NYSERDA project "Climate Change Vulnerabilities of and Adaptation Strategies for NY's Future Electric System"
- Develop new NY-focused REGEN to assess generation fleet given climate impact pathways (NYS ClimAID scenario inputs), environmental policies & socioeconomic trends
- Value: Help decisionmakers and planners design and operate system to be resilient to climate change and meet policy objectives at least cost

Project Approach: from climate drivers to NYS system impacts and costs

NYS ClimAID Climate Inputs and Hydrology temperature, precipitation, availability

Electric Supply & Demand impacts on resources, efficiency, loads


Resiliency Planning decisions about generation ca

decisions about generation capacity, ops, transmission, cooling technologies

Electric System Analysis EPRI US-REGEN capacity expansion and dispatch model

Costs and Benefits of Resilience Adaptation system costs and EJ analysis

Project Team

Research Team

- Delavane Diaz, EPRI, Project Director
- Stephen Shaw, SUNY-ESF, climate/water lead
- David Young, EPRI, REGEN model lead
- John Bistline, EPRI
- Geoffrey Blanford, EPRI
- Mary Collins, SUNY-ESF
- David Hunter, EPRI
- Clarence Lyons, EPRI
- Nalini Rao, EPRI
- Kara Allen, NYSERDA project manager

Project Advisory Committee

- Dan Bader, Columbia
- Vatsal Bhatt
- Suzanne Hagell, NY DEC
- Radley Horton, Columbia
- Christa Kelleher, Syracuse
- Schuyler Matteson, NYSERDA
- John Reese, Eastern Gen
- Karl Schoeberl, EEANY
- Amanda Stevens, NYSERDA
- Michael Swider, NYISO

Project Outline

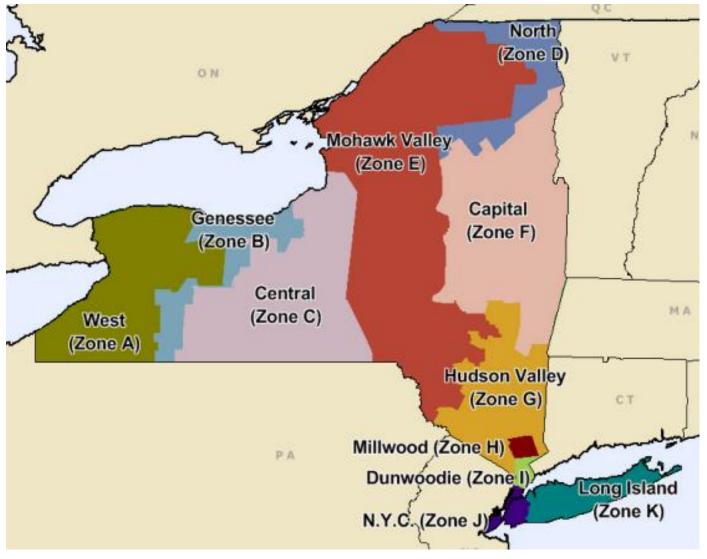
- Task 1: NYS stakeholder engagement
- Task 2: Compile New York climate data
 - Historical data and correlations
 - ClimAID projections of temperature and precipitation
- Task 3: Hydrological modeling of future water temperature & availability
- Task 4: Characterize NYS electric system in US-REGEN
 - Enhance NY representation with sub-state resolution
 - Develop and implement climate impact pathways on supply and demand side
- Task 5: Model reference scenario in enhanced US-REGEN (no climate impacts)
- Task 6: Model future electric system under climate change
- Task 7: Assess implications on vulnerable populations
- Task 8: Final report and dissemination of results

Modeling approach

Together...Shaping the Future of Electricity

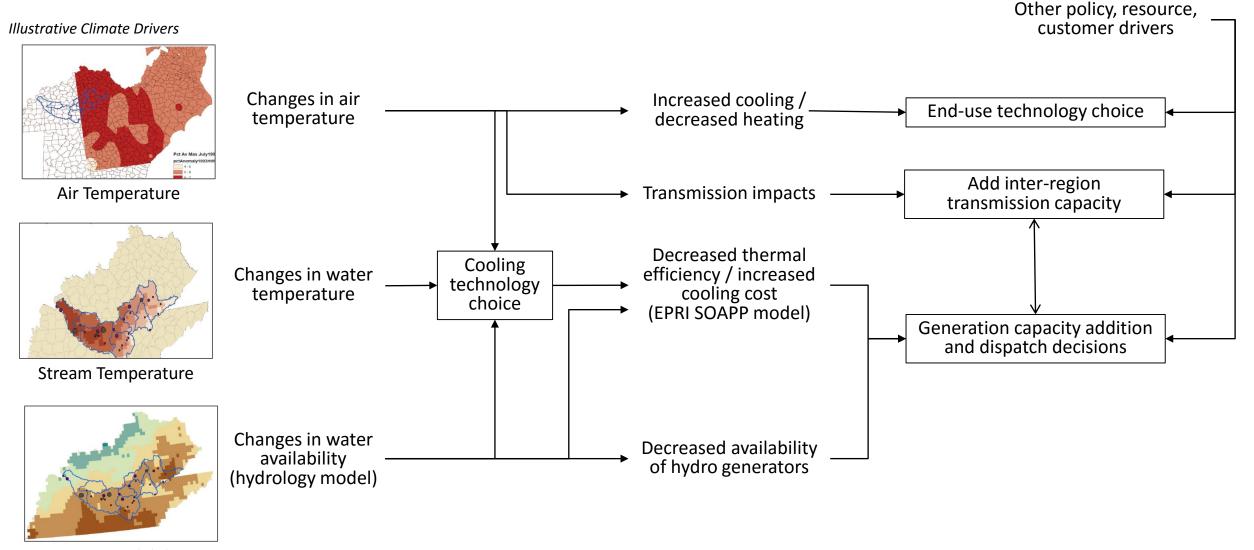
Delavane Diaz ddiaz@epri.com

Back-Up Slides


Timeline

- Task 1: Outreach and Engagement with NYS Stakeholders Ongo
- Task 2: Compile New York climate data
- Task 3: Hydrological modeling
- Task 4: Develop US-REGEN for NYS and impact pathways
- Task 5: Model reference scenario in US-REGEN
- Task 6: Model future electric system under climate change
 Feb-June 2018
- Task 7: Environmental Justice assessment
- Task 8: Final report and dissemination of results

- ers Ongoing, May 2017
 - Apr-June 2017
 - May-Oct 2017
 - July-Dec 2017
 - Dec-Jan 2018
 - May-July 2018
 - Aug-Oct 2018


New York Transmission Zones

Source: Federal Energy Regulatory Commission

Impact pathways under development in US-REGEN

Water Availability

Illustrative climate drivers from Cumberland Basin study (ORNL 2016)

